— O R T

Y T A s Lheiin e i it S T AR [ — g ot s A Tl sy sl Tl et ) e ‘ﬂ":dw"’ - had
P | oL -
;
e Lo v, - LN - - M ,
PRV Sl e EEE L - - [ -
» PR ' 5 . . . s .
o v B ¢ R . s Ve ‘ . - :
e ’ o L RN . . .
B N . N N
- - - N . [
~ o . . e
“arp, el K s «: N e M o | TR S e BN LR Orer T B ¢ (R ggiaoh L\ﬂbw‘ @ w—aw. e, wM
e SER OB Ya b 1A e e e, SRR St e P o, B wﬁﬁx‘ RN
. . ¢ N
’ X ' : Vs ¥ v R . . T RN 3
74 e RN v - o R TN,
3 ‘ * ! 4 B
Ttowo %ﬁ S e / a
e J . . . . . N - B
b - e . . . FEERY A K F R NN N o
< ] ’ - ¢ . B o
is . B N
.oy . o N , . R RE
0 3 Sl . o e . . 3
\ ,}‘o ¢ - P S ~ o R 3N
. . < R k
Y 3 - - < .
} B e : e RN
¥ L - P 7 .
. Lj T PG %}’ﬁ,i‘? i o £t %:i; 2
i }“ ﬂ.‘&n‘ .&f.\ § SR Y A W Bl ‘%’ g.waun..J A’:L; E

< -

mwaa&mwm&i&smw

< » e

M

< N *

N e
i AR

xg; s T CIRARINGRONIE
el | BOR FEDRYAL 2 0NIIAIG,

ST - TR Y ’?»*%mﬂ y

.

"f sﬁmﬁmﬁ ngaaoég~m~8<a> |

h

i, SR ._.4....4._;..“.._..1_-) s R A -

AT o “ﬁﬁiﬁ%l&u Y -




EWEEPATRA e L s v T L Lo

}
Jl
3
i
i

TR It LSRG s S N R £ S

v ot e W oy %
oo ———— —— -
PAUL WEIDLINGER, CONSULTING ENGINEER .
777 THIRD AVENUE i
i
NEW YORK, NEW YORK. 10017 g g
E
L
I
STRESSES IN AN ELASTIC-PLASTIC HALF-SPACE
DUE TO A SUPERSEISMIC STEP LOAD I
i
y H !1
H
5y I
q
i
ALVA T, MATTHEWS AND HANS H. BLEICH T
TERMINAL BALLISTICS LABORATORY -
BALLISTICS RESEARCH LABORATORY i
CONTRACT DA-30-059-AMC-8(R) -
! -
[
{ TECHENICAL REPORT No. & ) - .
MARCH 1966




ABSTRACT

The plsne strain protvlem of a step load moving with uniform superseismic
velocity Vv > cp on the surface of a half-space is considered for an elastic-

plastic materiel cbeying the von Mises yield condition.

Using dimensional anelysis the governing quesi-linesr partisl differential
equations are converted intc ordinary norlinear differentisl ones which are solved
numerically using a digitsl computer. To overcome computing difficulties asymp-~

totic solutions ere derived in the vicinity of a singular point of the differ-

ential equations.

Rumerical results are presented for a range of selected values of the
P
significant ncndimensional parameters, i.e. of the surface load i? ; of Poisson's

ratic ¥ and of the velocity ratio QL ¢
“P
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LIST OF SYMBOLS")

Punctions defined by Egs. (A-8) to (A-15).
Functions defined by Eqs. (III-14)-{III-16) and {ITI-26).

Velocity of propagation of elastic P-waves, S-waves snd of

inelastic shock fronts, respectively.
Plastic potential, Eg. (II-1).
Shear modulus.

Invariants of stress.
Yield stress in shear, Eq. (II-1).

Bulk modulus.

L>0 Furction related to inelastic behavior, Eq. (II-31).
p{x - Vt) Surface pressure.
Py » Pp » Py Intensities of step load surface pressure.
8 5 S, Principal stress deviators.
By sy s BiJ Stress deviators with respect to axes x, y, etc.
t Time.
vx ’ vy Components of particle velocity in x and y directions,
respectively.
v Velocity.
Xy, Y Csriesian coordinates, Fig. 1.
X = %gi sin2 ] Nondimenslonal expression.
XP » XS Values of X at P- and S-fronts, reapectively.
8y - 8,
B = T Hondimensional stress variable.
i 2
v Angle between the directions of 8y and of the position ray of
an element, Fig. 3.
*)

Other symbols, which are used in one location only, are defined &s they occur.
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Small quantity for purposes of asymptctic expansion.
Increments of o, v, T, etc. at a front.
Small quantity for purposes of asymptotic expansion.

Strains, strain-rates.

Small quantity for purposes of asymptotic expansion.

Angle defining direction of the principel stress 5 Fig. 3.
Function related to inelastic behavior, Eq. (II-E).

Poisson's ratio.

Variable defined by Eq. (II-16).

Mass density of medium.

Stresses, stress rates.
Principal stresses.

Shear stress.
Position angle of element, Fig. b.

Position of the elastic P- and S~ and of the inelastic shock

fronts, respectively.

Limits cf inelastic reglons.

Differentiation with respect to 9.
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I  INTRODUCTION.

The two dimensional problem of +he effect of a pressure pulse p(x -~ Vt)
progressing with the velocity V on the surface of an elastic half-space, Fig. 1,
has been treated by Cole and Huth [1] for a line load and, by superposition, may
be found for any other distribution p(x - Vt). Miles [2] has considered the three
dimensional problem of loads with axially symmetric distribution p(r,t) over an
expanding circulaer area on the surface, Fig. 2. He has demonstrated that the plane
problem (1) contains the asymptotic solution for the three dimensional problem [2]
in the region neer the wave front. The actual solution of the three dimensional
problem would require a great numerical effort which can be avnided, by using the
solution of the plane problem to estimate the effect of circularly expanding

surface loads.

Real materials can not be expected tc be elastic, and solutions of the three
dimensional problem, Fig. 2, for dissipative materials are hopelessly complex.
However, estimates for the three dimensional. case can be made from generalizations
of the problem treated in [1] for dissipative materials. This has been done for
linearly viscoelsstic materials by Sackman [3], and Workman and Bleich {4), in the
superseismic and subseismic ranges, respectively. Based on a formal solution in
[5] the effect of a step loed moving with superseismic velocity is determined in
the present report for an elastic-plastic material obeying the von Mises yield
condition. The identical problem, for a yield condition suitable for materials
with internal slip subject to Coulomb friction, is concurrently being treated for

publication elsewhere [6].

The yleld mechanism in the medium makes the problem nonlinear, such that
superposition is not permitted and each pressure distribution p(x - Vt) poses a

separate problem. The present paper treats the case of & progressing step load




p({x - Vt) @ pOH(Vt - x). An spproach permitting an approximate solution of the

important, but very complex case of a decaying surface pressure is discussed in

the Coaclusions.

The formulation of the probiem in [5] furnishes a set of simultaneous,
ordinary nonlinear differential equations which are solved numerically by =
Runge-Kutta forward integration scheme (71 utilizing an IBM T090. The integration
encounters numerical difficulties near singularities of the system of differential
equation. To treat such situations asymptotic expansicne were employed, leading

to approximate differential equations which could then be integrated numerically.

Numerical results for all combinations of the nondimensional parameters

V=0, § T, 0.35 and L . 1.25, 1.5, 2.0, k.0, are given in Tables 1-16 in each

P P
case for five values of the surface load Tg" The coverage of results is extensive

enough to permit interpolation.

[




II FORMULATION OF THE BASIC BQUATIONS.

Figure 3 lndicatee the half-space and a system of Cartesian cocrdinates. The
X-axis 18 in the direction of motion of the step load, the y- and z-axes are normal
to the swrface in and out of the plane of the figure, respectively. The analysie
considers the case of plane strain, e, = 0, when the velocity V of the step load
is superseismic. It is known [8] that the largest wave velocity in an elastic-
plastic material is Cp s the velocity of elastic P-waves in the material, so
that the term superseismic meaas V > cp Throughout the analysis it is assumed
that the strains and velosities are small, so that their higher powers may be

neglected in comparison to linear terms.

To describe the behavior of the elastic-plastic material the plastic potential

is introduced

Fuy, - x° : (1I-1)
]
where J2 is the invariant
! 1
Jp = 3 555 551 (11-2)

and the value X > 0 is the yleld stress in shear.

The behavior of an element of the material is then defined by the statements
which follow.
1. The value of the function F mey never be positive

F<O (II-3)

2. If, in an element of the material at a given instant,
F<O (II-k)

the rates of change in stress and strain are related by the conventional

elastic relations.




However, if the yield condition

F=0 (11-5)

is satisfied three possibilities exist: &) in the next instant of

“ime the material may be in a state of plastic deformation; b) it

may be in a state of elastic unloading; c¢) it may be in a neutral

state.

a)

b)

If the material is in a state of plastic deformation
=0 (11-6)

the total strain rate will be the sum of an elastic and a

plastic portion

RS (11-7)

where ifj is obtained from the conventional elastic relations,

while

P aF
€, = A xo— (11-8)
1) 5313

A, which must be positive
A>0 (I1-9)

is an a priori unkncwn function of space and time. It is to

be found as part of the solution of the proolem.

In case of elastic unloading f < 0 holda and the elastic stress-

strain relations apply.




¢) In the neutral state F vanishes as in case &, but neither energy
dissipation nor permanent deformation occurs and the elastie
stress-strain relations apply. In the present problem neutral

regions will be encountered in wnich neither the stress nor the

strain changes, ¢, , ® =0,

1) J

For the purpose of this paper it is convenient to combine elastic and neutral
regions, jointly to be called "nondissipative', as opposed to plastic regions,
where A > 0, indicating that energy is dissipated. In the nondissipative regions
the changes in stress and strain are governed by the elastic relations, while in
plastic regions, Eqs. (7) and (8) apply. Formelly, the equations in nondissipative
regions can therefore be obtained by substitution of A = O into the differential

equations derived below for the plastic regions and by replacing the conditions

F = F = 0 by the inequality (3).

Substituting Egs. (7) and (8) and the elastic stress-strain relations into

iy, - %‘- (v 5+ ¥y 4) (IT-10)

the following constitutive equations are obtained for the case of plane strain

—:-l:—. T 1-2v 3‘1-}\8 ”&yy
3G °y T 8(1+v)e ‘1 vy 3y
) (11-11)
av
1 ; Y G S
BT M =3 G; * ax
l 4 @ 1_2\, .
EC:(BX"‘B)')-W Jl+l(8x+8y) 0 ;
Ji 18 the first inveriant of stress, 8, » sy and Ve s vy are, respectively, the

stress devistors, and particle velocity components in the x- and y-directions.

4

[N
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Further, there are two equations of motion

avx

X T
TR el Ll e

} (11-12)
3s AJ v,

SR

Equations (11) and (12) and the respective requirements on F and A complete the

/

formulation except for initisl end boundary conditions.

In plastic regions additional equation F = O applies, so that there are a
total of seven relations for the seven unknovn quantities By sy »y Ty Jl » Vy s
vy.and A > 0. In nondissipative regions Egs. (1il), (12) apply, but the function
A vanishes identically, A m 6, while F must satisfy either F < 0, or the two
conditions F = O, F < O simvltaneously. In the nondissipative case there sre
only six differential equations and six unknown quentities. The complete solution
of the problem is to be obtained from the six differential equations (11), (12)
and the spplicabie relations.on A and ¥, subject to appropriste boundary or
initial conditions at the surface and at the junctions of the as yet unknown

regions:

1. On the surface, y = 0, a step pressure p = pOH(Vt - x) normal to the

surface is applied, so that,

[- P, (for Vt > X)
~ (II-13)

0 (for V¢ < X)
while

T®0 (IT-14)
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2. It is known from a general study of elastic-plastic wave propagation [8]
that the largest characteristic veiocity possible is Cp the velocity
of elastic P-waves. All stresses and velocities must therefore vanish
outside the wedge formed by the loaded portion of the surface and the

P-front, which is inclined at the angle

-1 1 1/ 2G(1-v
Pp =T - sin 7 p—(i(;—zf\,% (11-1%)

with the x-axis, Fig. L.

Because the steady-state problem is considered, stresses and velocities can
nct be functions of x and t seperately, but must be of the form f(x - Vt). For
the step load p = pOH(Vt ~ x) dimensional considerations discussed in detail in
[5] require further that the stresses and velocities do not depend on x - Vt and y

separately, but must be solely functions of the combination

£ - X ‘y"t (II-16)

Instead of using § as variable, the equivalent but more convenient one
-1
®=cot & (II-17)

is introduced. The angle ¢ is shown in Fig. 3.

Noting %%»- - ——l§~ , one obtains the relations
sin™®

8 _14 _ sin2g 4 (11-18)
& y& T Ty &

3 § 4 _ sin a

Iy Ty & T3 & (11-19)
3 vV d v 2. a

vl ; F14 ;‘;{- sin~¢ '&5 (11-20)

t

o L




-8 -

Substitution into Eqs. (11), (32) reduces these eguations to a set of ordinary

simultaneous differential equations in the single independent variable ¢.

Because of the manner of solution to be employed the unknowns By sy and T

are replaced by three other depandent variables, sl ’ 32 end 9,
s, = 8) cos® @ + 5, sin® @ (II-21)
2 2
6, = By COS 8 + s, sin e (11-22)
T = (s, - 5,) s5in 8 cos 6 (11-23)
1 2

Sy and s, are the two principel stress deviators, while 8 is in the angle between

the direction of Sl and the horizontal, Fig. 3. Introducing further the angle ¥y

between the direction of 8y and the position vector, Fig. 3,
Y xQ - 6 (II"2I4)
the six differential equations, (11), (12) become finally

t 2 ] 2 1
s, cos € + s,  sin” @ - (sl - 32) 9 sin 20 +

1 2
=2V ' . t
+ §%I137 Jl + L(sl 0052 8 + 8, S1n2 8) = - %g Vo (IT-25)
' sin® 8 + s, cos® 8 o' 8
s, sin + 8, cOs + (sl - 52) sin 28 +
- ' !
+ §%i%%7 Jl + L(sl sin2 6 + 8, c052 9) = %g Vy cot @ (IT-26)
1l-2v ! 2G ! !
Tov 91 =7 (Yot @ -v) (11-27)

1 4 t
(sl - 82) sin 26 + 2(81 - 52) 8 cos 20 + L(sl - 82) sin 28 =

!
= % (v, cot o - v;) (11-28)

eeldl e R R RN RN O BRE  pean

enet

§ Yo o "

.
FRNE P NN B
:
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t ? t
8, cos ® sin v + 8, 8in 9 cos vy - (sl - 82) 8 cos (v - 8)+
l t ]
+ 3 Jl sin ¢ = - pV \ sin @ (11-29)
} t t
N sin 8 sin vy - 8, CO5 8 cos v + (sl - 32) @ sin (v - 8) -
l t ?
-3 Jy cos @ = - pV vy sin ¢ (II-30)

‘Primes indicate differentiation with respect to ¢ and the function L is related
to X,

QL-—- A (I1-31)
V sin ®

The function L is subject to the same conditions as A, i.e. L > O in plastic

regions, L = O elsewhere.

The expression for the plastic potential in these variables is

2 2
F=sg +8; 8, +8;-Kk (II-32)

In plastic regions Eq. (6) requires f = 0, giving the additional differential

equation

(28, + 32) si + (sl + 282) sé =0 (IT-33)

1

t
The unknowns v; and vy can be eliminated from Egs. (25)-(30) without

differentiation, Using the symbol

X mX(p) = —%E sin P (II-34)
the operations
Eq. (40a) = Eq. (25) + Eq. (26) - Eq. (27) (I1-35)

Eq. (40v) = - X Eq. (27) + sin @ Eq. (29) - cos @ Eq. (30) (I1-36)
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Bg. (k0c) = X {sin 28 [Eq. (26) - Eq. (25)] +

+ cos {y - 8) Eq. {29) - sin (v

Eq. (402) = X {cos 20 [Eq. (26) - Fq. (25)]

+ sin (y - ©) Eq. (29) - cos (¥

Eq. (4Oe) = Eq. {33)

cos 29 Eq. (28)} +

8) Eq. (30)

sin 20 Eq. (28)} +

8) Eq. (30)

(11-37)

(11-38)

(11-39)

lead to the following set of five differentisl equations valid in plastic reglons:

1-2v
1 1 - (l+v ) 0
sin y cos® v 1-3X (i;%v) - sin 2y
L 1 .
5 sin 2y 5 sin 2y sin 2% 2X - 1
sin2 y-X X- cose v - cos 2¥ 0
251 + 52 sl + 252 0 0]

(sl + 5, 81
0 sé
1
0 § = 0

- X(sl - 32) (sl - s2)9'
0 L

L -

(11-40)

The system of equations for nondissipative regions consists of the first

four Egs. (40) without the terms containing L, i.e.

Kt BIPm e

waenonrel

P b
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-1 -
1-2v !
- - 1 el B
1 - 1+ ° 5y
2 2 1-2v !
sin” ¥y cos” Y 1-3X 17y - gin 2y 8,
=0
l '
sin 2y sin 2y 2 sin 2y - 2(1-2X) §»J
2 2 '
sin” y - X X - cos™ ¥y - cos 2y 0 (sl - 52)6
vt b v— —J

(I1-41)

st~
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ITI SOLUTIONS FOR INDIVIDUAL REGIONS.

As a first step towards the construction of overall solutions, expressions

for individual regions must be derived.

The latter will be combined in Section IV

to find the solution for the entire domain.

a)

Nondissipative Regions.

Equations (II-L1) are linear and homogeneous so that the derivatives

L}
of the stresses sl » 85 Jl and the value (al - 52) ¢ vanish, unless

the coefficient matrix in Eqs. (II-41) is singular, requiring

X(l-EX) [+ (1-2X)(1-2Vv)] = O (I1r-1)
Equation (1) has two significant roots,
l-v
Xp = I%v (117-2)
and
1
Substitution of the two roots Xp and XS into (I1-3%) furnishes the
two locations
-1 p
Pp =M - 8ln " (I7I-4)
c
-1 Ss ,
QS = M - gin v (I11-5)

where c, , ¢g are the velocities of P- and S-waves, respectively. 1In
' '
1 1 (8

so that in nondissipsastive reglons the stresses must remain constant

[] !
all locations ¢ = Pp OF Pg the values s, , 8, J - 32) 8 vanish,

except at the locations ¢P and QS « The latter being the potential
locations of elastic P- and S-shock fronts, respectively, it is knows
that discontinuitiecs in stresses and vclocities may occur at these
locations and may, therefore, be part of the complete golutions to be
constructed.

The following pertinent details will be required subse-

quently.
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(1) The P-front.

Designating the discontinuous changes in the various quantities
at the front by the symbol 4, the discontinuities in the stresses
UN ’ aﬁ -'az (normal and tangential to the front, respectivel’y) and
in the component Y of the velocity (normal to the front) are proportional

to AaN .
Ao
c

<
=

A, = —— AC y  bvy = - (T11-6)

©
b ]

No other discontinuities can occur in this location.

The changes AGN ard AOT are of course limited by the yield condition

F < 0 which must be catisfied on either side of the front.

In the actual sclution a P~front vill be encountered only when the
region ahead of the front is stressless and at rest. The normal to the
front is then a principal direction for the stresses behind the front,

g0 that y = O or g + Selecting al = aN , corresponds to

- e =7\
Y=3 {I11-7)

The corresponding values of the other quantities of interest behind
the shock front are

2(1-2v)al (1-2\1)01 (14v)oy
B'3’°1"§'('1'-'\7)—’°2"'3'(1'3'~':TV’J1'TV" (111-8)

subject to the limitation

|oy] < LILov)k (111-9)

{imposed by the yield condition.
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(2) The S-front.

At an S-front discontinuities occia' only in the shear stress

TN = TT = ¥ and in the tangential velocity Vp The change in velocity

ic proportional to AT

- AT—- { -
AvT peg (I11-10)

In addition, the yield condition F < O must again be satisfied ahead

of and behind the front.

The relations between the state cf stress on either side of an
S5-front in terms of AT and of the variables 8) » B85 B and v can be

obtalned in such routine manner thet only one detail useld in Section IV

i3 presented here.

It is possible for an S-front to occur between two neutral
regions, i.e. regions of constant stress for both of which the yield
condition, F = O, is satisfied. In this special case the quantitics

8, Jl , 8, and 8, have no discontinuity at the front, only the direction

1
of the principal estress changes. The valueg of the angles Q, ; ahead

of and behind the front, respectively, are complementary
Yum-y ‘ (I1I-11)

as shown in Fig. (5).

b} Plastic Regions.

In such regions Eqs. (II-LO) apply. They are linear and homogenecous

in the values Sy 8y s etc., and may be satistied by

] 1]
8, = 8, = Jl = (s1 - 52) 8 =L =0 (I11-12)

—— — — ponn —_— L s L - [ ] -—_— s —
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However, L = O impliec A = O which violates Eg. (II-9). It follows
that in plastic regions the determinant of Eqs. (II-40) must vanish, giving

the determinantal equation

(s, + 8,)% (b + byby) = 0 (111-13)
where

5, = 2[1 + (1-2v)(1-2x)) (III-1k)

b, = B cos 2y + (1-2X)(1-2V) (II1-15)

b3 = (1+v)(1-2X) - aax (I1I1-16)
and

B = ;%{};g (111-17)

If this value is substituted {t will be scen that Eq. (13) is a homogeneous

quadratic expression in 8 -

Due to the vanishing of the determinant only four of the five
Egs. (II-40) are independen~. By definition L must not vanish, so that

' ¢ ]

'
8y, By, J1 and @ can always be expressed in terms of L,

' (3'8) bh (Bl + 92) L

6 3, (111-18)
°é = Sk bh3£:l Lt (I111-19)
o' - ;;;72;73%2 (ITII-20)
1 - B [0 - 58] (:1‘7:';%: (111-21)
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Velocities and accelerations may be obtained from the relatiocns

. V sin ¢ (sl + 52) L~

- - - [T
v, = ZE(TER) S, [_bes sin (2y - @) - 2, sin cp] (1LI-22)
, ~-Vsing (sl + 52) L ]
vy = 612K bg [bgﬁ cos (2y -~ @) + 2b3 cos ¢ (III-23)
N ' <1-
v o=gsine v, (III-24)
v =3 s ' (III-25)
vy = g sin ¥ vy
where
b) = (1+v) cos 2y + BX(1-2v) (III1-26)

Since Eg. (13) must remain valid throughou: a plastic region, it may
be differentiated with respect to ¢. This leads to an expression which
contains the first derivatives of the stresses linearly, so that substitution
of Eqs. (18)-(20) furnishes a linear equation for L. Its solution gives L

as a function of B, ¥y and of the position angle ¢,

3b2(l-2x) ( X sin 29 [h(l-29)(b2 + b3) +b 82+ 2 +2v)] + thB sin 2% sin2 )

1€

L =
L sina () (3+32)(l-2X) b), (b2 cos 2y - blBX) + 3b?b

3 sin2 2y

(11I-27)

4 t 1

t
The values of the derivatives sl ’ 52 ’ Jl and 8 can be obtained by

substitution of Eq. (27) into Egs. (18)-(25).

In principle Egs. (18)-(25) permit the numerical determination of the
values of stresses and velaocities in the interior of a plastic region by
guadratures if the values on one boundary of this region are known. The
starting velues must inherently satisfy the yield condition, F = 0, and

the determinantal eguation (13). Further, throughout the plastic region,
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L>0 (111-28)

must be satisfied.

Discontinuities (Plastic Shock Fronts).

It is known that in transient problems one, but just one type of plastic
shock front can propagete in the elastic-plastic material considered here [8].
However, such a front can exist only in locations where the normal to the
front i'ns in the direction of one of the principal stresses, while the
other two are equal and where the yleld condition is satisfied. The velocity

of propegation of the front is

(111-29)

e]
"
IR

2(1+v
3(1-2v

to the particle velocity N normal to the front and to the first invariant

The change AJl wust have the same sign as Ji

vhere K = G is the bulk modulus. The discontinuity is restricted

Jl .

83y
F=>0 (III-30)
1

The other conditions stated define the values of Yy and B
"
Y = -é- s B x 3 (III"31)

A discontinuity traveling in real space with the velocity c, Eq. (29),

can occur in the steady-state problem only inm the loecaticn

§=m-etnt (%) (111-32)
The corresponding velue of X is

5 1+v

X = §TI:§§’ (II1-33)

The denominator in Eq. (27) vanishes, as expected, for these values of

¥, B and X.
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The possibility of the occurrence of this discontinuity (plastic shock
front ) must be considered when constructing the complete solutions in
Section IV. It was actually found that no such shocks occur, except in the
limit, V-+ «» . However, for large values of the parameter %? defining the

surface load, the sclutions come extremely close to the singular values

representing a shock, so that computing difficulties occur.

Asymptotic Solutions near Singularities.

As stated iu the previous paragraph numerical difficulties in the
vicinity of § = @ will make the procedure for integration of Egs. (18-27)
outlined in subsection b unsuitable if the values of B and ¥y are sufficlently

close to those for a plastic front, B = 3, y = g'.

To establish the behavior of the solution of Eqs. (18-27) in such cases,

let

B=3+4 (III-3k4)

where 1, 4 and ¢ are small quantities. Substitution of Eqs. (34) into the
determinantal equation (13), Eq. (20) for 9; and an equation for %% L] A'
obtained from a combination of Eqs. (17), {(18) and (19), provides three
simultaneous first order differential equations for the three unknowns

N, 4 and L, subject to the inequality L > O. These three nonlinear
differential equations are of course equivalent to the equations in sub-
section b and no easier to treat. However, 4, T and ¢ being small quantities,

approximate equations may be obtained by neglecting higher order terms.

=
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Various degrees of approximation are possible depending upon tne number of
higher order terms of 1, &4 and ¢ which are retsined. Appendix A presents

the resulting set of equations when the leading and the next terms in each
varisble are retainel. In [5] the comparable set of equations is given when
only leading teggs of each unknown are retained. Together with the sppropriate

expression for Eil the epproximate equations may be used when integrating in

‘the vicinity of @ = @.

o
k
differential equations (18-27) was stopped when accuracy troubles developed

To obtain results for high values of the integration of the original

and the integration was continued using the approximate equations derived in
Appendix A. This process was successful for all numerical cases ccnsidered.

The resulis obtained in this manner in the vicinity of the singular point approackh
simple asymptotic expressions derived in [5] for v # % . This is shown for typical
cases in Figs. 15, 17 and 18 of this reference and provides a check on the results

of the complicated analysis in Appendix A.

For the specisal case ¥V = % an asymptotic expression valid for 9 < QS W@ is

given in Appendix B. As demonstrated on a typical case in the same Appendix, it
»
-]-:9- by using this

asymptotic solution for ¢ < P and a numerical integration of the original differ-

is possible to construct sclutions for v = % for high values of

ential equations (18-27) with double precision for ¢ > Pg -
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IV CONSTRUCTION OF SOLUTIONS.

In Section IV a number of partial solutions were obtained from which the
solution of the complete boundary value probliem is now to be constructed.
Section III-b gives tne differential equations for the deternination of the
stresses and velocities in plastic reglons; Section ITI-a indicates that all
unknowns in nondissipative regions are constants, except for discontinuitiec of
a prescribed nature at the locations QS and QP « In addition, as discussed in

Section III-c, a shock front with plastic deformation mey occur at the location P

In Section II, boundary conditions and additionsal requirements, which the
solution rust satisfy, were formulated and discussed. Equations (II-13 and 14)

for the prescribed surface load in terms of the varisables s J, » ¥ and @ require

i 3
elther

J
Sl(ﬂ)+-]-;-(-t'2-n - P

: 8(n) = 2 (IV-1a)

or

J.
sa(ﬁ)""ﬂ" P %

3 8(n) =0 (Iv-1b)

0o 2

A further boundary condition requires that all quantities must vanish for
¢ <%p, Eq. (II-15). This condition, in conjunction with the fact that a
plastic region or a plastic shock can exist only in locations where the yield
condition is satisfied, permits the conclusion thet the change in stress from
vanishing velues for @ < QP to nonvanishing values must be nondissipative.
However, in nondissipative regions the stresses are constant, except for dis-
continuities at ¢ = ®p O L A solution in which plastic deformations

occur at ell can therefore start only in one of the two ways described below.
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Case 1. Discontinuities occur at the P- and S<fronts, where the discontinulty

at ¢P satisfies the inequality

o, [of*)] < L2Lyik (1v-2)

while the discontinuity At at P is of such magnitude that the yield condition

F [cpé”] 0 (1v-3)

is satisfied, The synbols (+) or (-) indicate approach from above or below,

respectively.

Case 2. A discontinuity occurs at the P-front, described by Eqs. (III-7,8),

gso that the yleld condition is satisfied for ¢ = ¢§+), i.e.

% [”éﬂ - ‘&1%‘5‘3)5 (Iv-4)

In Case 1, plasticity may occur only in locations @ > Py » while,

in Case 2 it may occur already for @, <@ < g .

As a next step in the search for solutions it is helpful to consider the

latter as function of the nondimensicnal surface pressure %g , while Poisson's
ratio v and the velocity V are considered constant. For sufficiently small
values of %?-the solution must be entirely elastic, but as %?-increases plastic
regions must occur and should form a gradually changing pattern. Based on [1]

Pp
one can find the limiting value 1? , @bove which entirely elastic soclutlions are

no longer possible.

The elastic soluticn, shown in Fig. 6, has two discontinuities at ¢P and QS
with regions of constant stress between ¢P and %5 end between ws and the loaded
surface § = 1. Depending on the values of the parameters v and gL , the yield

P
condition may be reached in either of the twc reglons resulting in different

e W b M et et = e P _ . -
_____E———&‘ S — —— — - -
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P
expression for T:E « If the region 9 > Pg controls,

X
2

Py 3N
st o (IV-5a)
k [32{2 - 3N cos 2qws + (1-v+\¢2 ) coet2 aps] :

where

N m %‘-[cos 29g + (1-2v) cos 2(€ps - QP)] (Iv-5b)

while

o=

-

(1.-:2\9)2 cos® g
if the region @ < q>S controls. The decision which region controls can be made
by comparing the values given by Eqs. (8) and (6), the smaller one controlling.

Designating as Range I the combination of values ¥V and EY‘ where Eq. (58) controls,
P

one finds that in this range

v ¥ 1-20)°
R (1)

The remainder of the range will be designated as Range II. Both ranges are shown

P
in Fig. 7. The limiting values -kE are shown in Fig. 8 for several values of ¥ as
function of _Y__ .
¢
P
P

If the surface load exceeds the value -Eg- by a sufficiently small amount the

elastic-plastic solution should differ only slightly from the elastic one, which

can be used to predict the character of the solution. Because the situations

differ, the Ranges I and II must be discussed separetely.

a) Solutions in Range I.

Pg

In this case - ie given by Eq. {5¢) and the yleld stress in the elastic

solution is reached cnly in the region ¢ > tps « The discontinuity cl satiefies

-

| RS
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then the inequality (2) and continuity requires that this inequality will still

p p p
apply for a range of values 1?-> 7? > 3§-, vhere Py, is a 1limiting value, not yet

known. In this range the start of the solutions will be according to Case 1l and

plasticity can therefore occur only in the region ¢ > *S .

Using an indirect approach, the determination of plastic solutions for values
29 < EE begins with the selection of & pair of starting values cl and AT near those
for the limiting elastic case. Experience and continuity considerations indicate
that this value al should be larger than al corresponding to Pp given by Eq. (8).

A plastic region can start only at a point Ql which is a root of Eq. (III-13).

Inequalities derived in [5] indicate that, for a given state of stress, this
equation has only two roots in the meaningful range of @, namely g-< ® <1, subject

to the following bounds:
Pp <Py < %g ) Pg <Py < W (Iv-8)

Starting integration at v] ™ ¢B the solution in the interior of the plastic region
is determined from Egs. ,[II-18 to 27)., The plastic region can be extended as
long as Eq. (III-27) gives velues L > O, but the plastic region may be terminated
at will at any earlier location Py - The solution for ¢ > P is then nondissipative,
i.e. all quantities are constant. If, therefore, in the process of forward in-
tegration a value @ is encountered which satisfies Eqs. (1), the plastic region
is terminated and a solution for one value of the surface pressure ég‘has been
obtained. Repeating this process with gradually increasing sterting velues ai
the whele spectrum of values satisfying the ineguality (2) can be explored.
Sclutions, if any, obtained in this manner will have the configuration shown in
Fig. 9, j.e. discontinuities at Pp and 95 and a plastic region W > P > ®y > ¥g *

There will be an elastic region of constasnt stress from QP to ¢S and two neutral

reglions to either silde of the plastic one.




S~

- 24 -

One can proceed in a similar manner when the solution begins at ¢ = QP as
indicated in Case 2, Ste-ting with a value 6 according to Eg. (3), the yield
condition is satisfied for any value @ > Pp » 8O that the determinantel eguation
(I11-13) sccording to Eqs. (8) vow has two roots, @ N % ; at vhich plastic
regions may start. Both roots must be explored. If the larger one, ¢ > Pg
leads to a soluticn, it has a configuration as shown in Fig. lOa. Starting,
alternatively, with the smaller root, ®p < ¢l = ¢A < ¢S , several possibilities
are to be investigated. The integration may be continued as long as L > O to see
it a value = O or g can be reached. The configuration of such a solution, if
any, is shown in Fig. 10b. Alternatively, the plastic region can be terminated
s
5 ¢
Tfollowed by a neutral one for values ¢ > 9 - The inequalities (8) on the roots

at will at a point @, < @g vhere 840, The piastic region will then be

of Eq. (III-13) indicate that there is just one more root ¢3 > ¢S , when a second
plastic region can begin. Starting integration at this point may lead to a
terminal location Qh y Where 0= 0or g « The configuration of such a solution,
if any, Fig, 1Oc, contains a P-front and two plastic regions, separated by three
neutral. regions. There are, however, further possibilities. The neutral region
9> P which follows the first plastic one may be terminated at P by an elastic
change in shear, AT, which is restricted in sign and intensity by the yield
condition., If AT is such that F [¢é+)J < 0, the region § > 9g becomes elastic,
This might permit values @ = O, g at the surface, the corresponding solution
having the configuration of Fig. 1l. Finally, the important cese must be
considered where the value of AT is such that F [¢é+)} vanishes again, a situation
discussed in Section III~a~-2., In the letter case there is again a neutral region
for ¢ > @g which can be followed by a plastic region because Eq. (III-13) has

a root ¢3 > QS glving a starting location. The configuration of a solution

obtained in this manner is shown in Fig. 12.
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b) Solutions in Range II.

p b p
In this range TE is given by Eq. (6) so that in the limiting case 78 = T?

yield is just reached in the region ¢P <9< @S « The discontinuity oi at the

P-front must therefore satisfy Eq. (&), which will also hold for neighboring

b p

elastic-plastic solutions where T?-exceeds 1? slightly. These solutions will

therefore start at ¢ = QP according to Case 2. In the limiting solution for

b p

3? = T? the region 9 > ws is below yield and continuity requires this to hold in
neighboring elastic-plastic solutions, so that the plastic region must lie in the
range ¢P < ml < Qa < @s . The ronstruction of solutions begins exactly as for

p D

T§'> T? « For each terminal point ¢2 the strength of the discontinuity AT at the
n
2
limitation F [¢é+)] < 0. VWhen the required value AT violates this condition a

shear front is determined by the requirement that & = 0 or = subject to the

second plastic region for ¢ > ws is needed; i.e. the configurations shown in

Figs. 10c and 12 are to be investigated.

c) Alternative Solutions and Considerations of Uniqueness and Existence.

In the absence of a uniqueness theorem it is vital to demonstrate that
configurations other then those in Figs. 9 to 12 can not lend to solutions.
According to [5}, Eq. (III-13) has for a given state of stress one root ®, no
more no less, in each of the intervals vP <@ < ¢S and @s <o <", If a plastic
region ends at a location @1 in one of these intervels, the state of stiress in
the remainder of the intervd for o > Py is necessarily neutral and uniform and
equal to the one at the terminal point Qi of the plastic region. Qi ie therefore
the only solution of Eq. (III-13) for this state of stress in the particular

interval and no more than one plastic zone can therefore occur in any interval.
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In Section III-3 the possibility of discontinuous plastic shock fronts has
been indicated and their occurrence must be considered. It has been shown in (5]
that for finite values of V no plastic shock front can occur and, that there can
be no more than one plastic region in each of the intervals ¢P <o <L QS )
¢S < ¢ < W. While discontinuous plastic shock fronts can not occur, values of
4 and 3, where the conditions (III-31l) are nearly satisfied, are encountered.
The asymptotic behavior of the solution near ¢ = é in such cases was studied in
Section III-d and details are given in Section 5 of [5]. There’ore, combined with
elastic discontinuities at the P- and S~fronts, only the limited number of

configurations shown in Figs. 9 to 12 are possible.

The numerical anslysis by digital computer was set up to investigate all
possible alternatives, i.e. the configuration according to Fig. 9 if the starting
value dl satisfies Eq. (2) and any of the alternatives shown in Figs. 10 to 12 if
o) satisfiee Eq. (3). While none of the configurations shown in Figs. 1l0a-c ever
furnisked a solution, no general proof permitting elimination of these cases is

avallable.

In Range I sclutions which start accordi.4 to Case 1, have the configuration
of Fige 9. For fixed values of Vv and V, these solutions form a family which
depends on one parameter, the selected starting value Oi > alE o It was found
that the surface load 1;;9- increases monotonically with 0, until the limit, Eq. (4)

p
for 9 is reached, which leads to a limiting value of the surface loadwE ’

k
p
However, no analytical proof of the monctonic increase of 1? is aveilsble.

The solutions found for Range I, which start according to Case 2, had always
the configuration shown in Fig. 12. These solutions also depend on one parsmeter,
viz. the stopping point ¢2 of the plastic region between QP and ¢S . If ¢2 is

selected only slightly larger than Ql , the solution must obviously be very close
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P, ~P
to the limiting one for Case 1, so that in such a cease 1§-> 7% and there is a
smooth transition from the configuration according to Fig. 9 to that of Fig. 12.

2
K

with ¢2 « As @2 spproaches a limiting value the surface load goes to the limit

P
T?”‘ o , for reasons explained in Section III-d.

The numerical analysis indicated that the surface load increases monotonically

In Range II, only solutions which start according to Case 2 were found, their

configurations being as shown in Figs. 11 and 12. Figure 11 applied for values
Pg Py PFp Py,
7;-< 3;-5 * where Tr»is a bound. The corresponding family of solutions depends on

D

the stopping point ¢2 of the plastic region. The bound 1% is reached when the
D

elastic region for ¢ > Pg becomes neutral. For larger values of 7? Fig. 12

applies and all statements made in Range 1 for this case apply.

In Range I as well as in Range II, combination of all solutions obtained
numerically furnished one, and only onc solution for each value of §§»> ﬁ? .
flowever, no general proof is available that this must be so. Existence and
uniqueness of the solutions obtained must therefore be demonstrated for each
combination of values ¥ and gL by actual computation of the families of solution

P
according to the configurations shown in Figs. 9 to 12.
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v RESULTS AND CONCLUSIONS.

a) Numericel Results for the Stresses.

For the numerical integration of the simultaneous differential equations
(III-18 to 21) in plastic regions, a Runge-Kutta forward integration scheme of
Fourth order, [7], was used. Computations were programmed in FORTRAN for an
IBM 7090 digital computer. Results for the stresses are given in Tebles 1 to 16,
(to be used in conjunction with Fig. 13), for all combinations of the parsmeters
v=0, G,125, 0.2%, 0.35 and gL = 1.25, 1.5, 2.0, 4.0, for five different values

P P P

of i? . The wvalues 1? have been selected such that there are a sufficient number

of results to permit interpolation in each of the configuraticns applicable for

each of the combinations of v and é! .
P
o
In general there are three distinctive wvalues of * for each case, which are
P P Py Pg
called <’ -E-and —=~ o, The value 7?-13 the one up to which the solution is
Py, Pp _Po Pp
entirely elastic. The distinctive value, ) defines the range ij'< * < * where
a configuration with one plastic region applies according to either Fig. G or
p P
Fig. 11. For 7§-> 1% the applicable configuration, Fig. 12, contains two plastic

regions.

As mentioned in Section IIl computational difficulties arise in the case

P, Pr P, %
3 > jz-when EF-becomes larger than about 5. In the integration the value of %

obtained dependes on the selected end point ®, of the lower plastic region. The
details of the difficulties depend on the value of Poisson's ratio, ¥ z % . For

v > é ’ Qe remains smaller than @, but the computation becomes sensitive when P
approaches @, For v < % the point @ is situated ia the interior of the upper
plastic region, but the computation in the vicinity of @ becomes very sensitive to’
small changes in @, . For v = é , vhen @ ® $g » both plastic regions approach ®,

and the computation agein becomes very sensitive to small changes in @, .
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In either of these cases the sensitivity is due to a very rapid change, in the
proximity of 5, in the quantity Jl . This change is extremely rapid, nearly a

shock front, while other quantities near ¢ spproach limiting values smoothly.

i

For wvalues " where computationel difficulties arise, the approximate

differential equations (A-5-T) derived in Appendix A must be used. One result,
D

designated by 1? , requiring this type of analysis is given in the tables for

each conmbinetion of Vv and gL +» The stresses al ’ 02 and Jl for any higher value
P p(p,+38)
of the surface pressure, say 7? = A " i H

, are equal to o, + 8 , ¢
J? + 8 , respectively, at iocations ¢ > ¢, where the superscript H indicates

1 n * § ,
the respective values for pH given in the tables. The stresses for location
¢ < @, and the quantities P and 8 everywhere, are approximately equal to those

for Py given in the tables.

The numerical results for the stresses are recorded in Tables 1-16. The
notation "Not Applicable" in the tables which mey appear in Regions B or C,
indicates that the respective region does nct occur at all for this value of P, »

i.e. region A or D, respectively, or both extend as far as the S-front. For

Y B
values E§'< 7? resulis may be obtained by interpolation (sometimes nonlinear),
Py Py
vhile for 1;-> i;-the procedure stated in the previous paragraph is to be used.

At points of transition in the configuration, i.e. for the loads Pp and P, » it
is seen that the upper and lower limits of one of the plastic reglons are equal,
ml L %5 » OT ¢3 ~ Py indicating that there is actually no plastic region. These
values are given in the tables to permit interpolation for pressures exceeding

the respective value p, or Py, ¢

b) Simplified Determination of Velocities and Accelerations.

The basic reletions in Section II permit the numericel determination of
gtresses and velncities or accelerations. The integration for the stresses must

be actually carried out to satisfy the boundary condition on the surface. The
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parallel integrations to find velocities and accelerations may be avoided, by using
the following relations, some of which are exact, while others are only good

approximations.

At a front of discontinuities, i.e. a P~ or S-front, the accelerations are of
course infinite, but the changes in velocity are given - exactly - in terms of the

respective stress discontinuities,

o
at @ = o A | = ._..ﬁ._.l__...._ (v-1)
P N g V sin QP
. - AT _
at @ = ¢g buy, "9 Vsingg (v-2)

where the subscripts N, T indicate normal and tangentiasl directions, respectlively.
The value of AQiat 8 P-front can be taken directly from the numerical computations
for the stresses. The value AT can easily be computed and is given in the tables

listing numerical results.

In con’ "nuous elastic regions velocities do not chenge, while accelerations
vanish. Inelastic regions being reasonably narrow, one may disregard tangential
accelerutions and changes in velocity, while the normel acceleration may be assumed
to be uniform in the region, giving a linear change ir velocity. The total change
in velocity, AuN » in an 1nelastic region of extent A9, may be found from the change,

Ao, in the principal stress G at both ends of the region

lA' !-v —---ég-——- (v-2)
I_uN I_ 'P V sin Qm | \rTTos

where P is an angle defining the location of the plastic region, say the mean of
the values QJ at the end points. The acceleration is

Ab
N
b (v-1)

N
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Except for values of gL very close to unity, the plastic regions are narrow,
P
so that the above approximations are quite satisfactory when determining shock

factors.

¢) Conclusions.

A method has been presented and numericel results have been tabulated for the
problem of & hal.-space of a von Mises material subject to a step load progressing

with superseismic velocity, V > Cp

With regard to application of the results to protective construction, it
must be emphasized that the effects of a step load and those of a decaying
pressure differ necessarily. The results for the step load may be used
approximately for a decaying load only for points in the vicinity of the front
of the surface load and soon after pessing of this front. The solution for the
step load approximetes the solution for the decaying load reasonably within a
distance D from the front, Fig. 14. This distance is the distance in which the

peak pressure decays by about 10-20%.

It should be noted that the present report emphasizes numerical results.

More theoretical and academic matters, e.g. concerning uniqueness, are treated

in [5].
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APPENDIX A - Approximate Forms of Equations (III-18-21 and 27).

Using the relations

B=3+4A (A-1)

A set of approximate relations will be derived to replace Egs. (ITI-18-21 and 27)
in the vicinity of ¢ ~» @ where the numerical integration of the above equations
encounters difficulties. 1, 4 and ¢ are to be considered smell, but, to obtain
sufficient range of validity of this approximation the first two significant

terms in each varisble are retained.
Replacing ¢ = ® - @ by the more convenient variable
§=X-X (A-2)

where X, X are defined by Eqs. (II-34), (III-33), respectively. To the order

of the approximation used one finds

!

2
fo- /AL, e ] -3)
{1+V) cp 2cy (1+V)

Similarly, approximate expressions for cos 2y, sin 2y are

cos 2y = -~ 1 + 21F

(A-4)
sin 2y = ~ 21

Introducing Egs. (A-1) to (A-4) into the determinantal equation (III-13) and the

t
differentiel equation (III-20) for 9 , retaining only appropriate terms yields

a,8% + a,T = ol (A-5)
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Hars %‘- 1L (a-6)
Combination of Egs. (III-17, 18 and 19) permits formulation of a relation for
By,
e 3,—;1 L (a-7)
where
a 3‘-;-8-3 - WP - % (1-5%) € + b(1-2v) €° (a-8)
8y = - 32(L+v) - 2h(1-29) § - 3 (1748v) & - 8(1-29) $A (A-9)
ay = 8(1-8v) - LB8(1-2v) § + 4(1-8v) A - 24(1-2v) §4 (A-10)
2, = b(i+v) + 28 + 3(1-2v) § - 97 - 37FA (A-11)

ag = 2(1-8v) « 3(5-16%) ¢ + ?_&_1_-,5,)_8_\1)_ 4 - (5-16v) A +

+ 18 £2(1-0v) + 6(1-2v) £2a (A-12)

a8 = 12 + 64 + Aa (A-13)
a = 3(2-29) § + L2 4 4 20249) 7 4 (1-29) 01 (A-14)
ag = - b(1+) - 24 + 9P - 3(1-2v) § + 3 4°F (A-15)

Equations (A-5 to T) govern the solution in terms of the three unknowns 1, A and

L>O0.

The dexrivative of J, becomes

1
aJ.
1 14V 2 9
etk ERE Sl ORTSE (A-26)

where
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8 = 9(1-2v) § + (1+v) & + 6(2+v) ﬂz + i%—‘i)‘ Aa + 6(1-2v) A€ +
+ (1-29) A% + 2(1+v) AT (A-17)

oo = - E -4 - 2(1-2v) € + 2t (A-18)

The quantities 8y and B, ¢an be found from the yleld condition and from the

relation B = 3 + 4, once A is found.

It may be shown easily that Fgs. (A-5,6) reduce to their counterparts
presented in [5] when §, A and 1) become small enough to permit retention of
ieading terms only. Equation (A-T) also reduces to its counterpart in [5]
providing the relationship between §, M and & given by the simplified determinantal

equation {Eq. (3-35) of {5]} is employed.
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APPENDIX B -~ Solutions for ¥ = é near ¢ = ®g = Q.

For v = % the asymptotic solutions valid for ¢ < QS @ @ can be obtained from
a simplification of the differential equations (A-5, 6 and 7) where, after sub-

stituticn cf v = é ; only the leading terms have been retained:

B T+ & 542 - 3682 (B-1)

A' = - (68 + A) L (B-2)
. 1

M=1l-zL (B-3)

In a manner similar to the one used in [5), an asymptctic soluticn for

¢ < 0 of these equations is

- 6/3 88 (B-4)

[~
]

N"20 (B-5)

Using tnis asymptotic solution for ¢ < 9g ® 9 and a double accuracy
integration of the original Jiffer=ntial equations (III-18 %o 27) for ¢ > Py ™ P,
solutions could be constructed successfully. As a typical case, Figs. 15 and 16
show the values of A and 1 as functions of e for V = 1.25 Cp There are only
two extremely narrow neutral regions between the two plastic rezions and the

S-front. Further, the discontinuity in shear at the S-front becomes extremely

small, approximately zecro.
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TABLE 1 (For definition of regions, see Fig. 13)
V=0.0 V=125 c, 9= 126.87° 95 = 145.55°  § = 152.49°
Pg |Pp P, <P Py, Py, <P, < Py Py
P, =l.blk | p =2.17k p, =2.40% p, =3:20k | p, w8.02 k
okl o676 - 1.58 - 1.73 - 1.73 - 1.73
< | %/k 0 0 0 0 0
% N/l o - 1.58 - 1.73 - 1.73 - 1.73
i 3.00 3.00 3.00 3.00 3.00
8 36.87° 36.87° 36.67° 36.87° 36.87°
®). Mot ApplicablelNot Applicablel  140.29° 140.29° 140.29°
P " " 140,29° 143.51° 14k, 08°
a,/k " " Not Applicebld - 1.86 - 1.89
p: il . - ! -~ 0.170 - 0.211
’§> 5/ " " " - 2,11 " p.eo
P ! " " 2.72 2.69
8 " " 46.29° 48.6°
Ml - 1.7 - 1.1 - 1.05 - 0.536 - 0.4ok
°1/k4N0t Applicable - 1.68 - 1.73 - 1.8 - 1.89
o | Ik " 0.096 0 - 0.170 - 0.211
g, Jy/x " - 1.58 - 1.73 - 2,11 - 2.22
: B " 3.37 3.00 2.72 2.69
® " 78.00° Th.23° 64.81° 62.5°
P3 161.39° 156.8° 155, 42° 152.67° 152, 42°
Py 161.39° 161.39° 161.39° 161.40° 161.40°
okl 1. - 2.17 - 2.40 - 3.20 - 8,02
a | %/k 0.529 - 0.333 - 0.569 - 1.36 - 6.24
§, e L o.876 - 3.08 - 3.77 - 6.6 | -20.7
“ 18 6.62 4,06 3.98 il L.0
8 900 900 90° 90° 90°
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TABLE 2 (For definition of regions, see Fig. 13)
V=00 V=15 ¢, ¢,=138.19° o =151.87° § = 157.36°
Pp P <P <Py P Pp, < Po < Py Py
P, = 1.53k | p, = 1.85%k | p = 2.3% | p = 2.7k | p_ = 6,57k
o/kl 118 - 1.kl - 1.73 - 1.73 - 1.73
< | 9fk 0 0 0 0 o
% I/kl 1.8 - 1.h - 1.73 - 173 - 173
“| s 5,00 3.00 13,00 3.00 3.00
® 48.19° 48.19° 48.19° - 48.19° 48.19°
?1 Not Appliceblefot Applicsble] 118.90° 148.90° 148.90°
P2 " " 148.90° 150.02° 151.09°
oy/k " " Not Applicebld - 1.78 - 1.83,
m | 9./ k " " " - 0.0689 - 0.12h
g Jl/k " L " - 1.89 - 2.02
18 " " " 2.88 2.81
g : " d 52.15° 56.38°
M| - 1.0 - 0.978 - 0.7% - 0.569 - 0.327
9,/ hot Applicablel . - 1.63 - 173 -~1.78 - 1.83
© a,/k n 0.190 0 - 0.0689 - 0.12k
'§) o/ " - 1.hb | - 1.73 - 1.89 - 2,02
8 P " 3.79 3.00 2.88 2.81
® " 84.57° 75.55° 71.60° 67.37°
P3 | 163.u8° 161.72° 158.88° 157.86° 157.3%°
P | 163.48° 163.53° 163‘.h7° 163.48° 163.48°
o/t 1.53 - 1.85 - 2.38 271 - 6.57
; Ip/k 0.352 - 0.13° - 0.571 - 0.893 - 479
-g, WE] 18 - 2.11 - 3.70 - 467 - 16.32
1P 4,80 4,00 3.72 - 3.72 3.75
® 90° 90° 90° 90° 90°
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TABLE (For definiticn of regions, see Fig. 13)
V=00  V=2.00 ¢, gp=150.00° ¢ = 159.30° § = 163.22°
Py 125 <2, <y Py, P, <Py < Py Py
P, = 1.6% P, = 1.9% | p = 2.3k | p = 2.7% | p, = 6.61k
okl i - 1.62 - 1.73 - 1.73 - 1.73
< | 9% 0 0 0 0 0 §
S | 7 /x o
| L - 1.4k - 1.62 - 1.73 - 1.73 - 1.73
= 8 3.00 3.00 3.00 3.00 3.00
® 60.00° 60.00° 60.00° 60.00° 60.00°
P ﬁlot ApplicedldNot Applicsbld — 157.95° 157.95° 157.95°
@5 " 157.95° 158.66° 158.95°
a,/k " u Not Applicabld =~ 1.77 - 1.78
| ou/x " " " - 0.0l95 - 0.0671
g, Jl/k " . " - 1.85 - 1.89
=1 P " " " 2.92 2.90
° " " " 63.57° 65.40°
M| - o.831 - 0.69%6 - 0.552 - 0.342 - 0.237
%1/% Not Applicable] - 1.69 - 1.73 <177 - 1.78
© o,/k " 0.07k1 0 - 0.0495 - 0.0671
5| /e " S162 - 1.73 - 1.85 - 1.89
& | p
" 3.27 3.00 2,92 2.90
° n 8k.16° 78.59° 75.02° 73.26°
P3| 166.54° 165.08° 163.84° 163.31° 163.22°
P | 166.54° 166.56° 166.54° 166.54° 166.54°
G2k 163 - 1.95 - 2.31 - 2.72 - 6.61
a | ok 0.189 - 0.161 - 0,523 - 0.932 - Lb.8Y4
% N - 2,40 - 3.47 - 4.69 - 16.39
. B 3.79 3.50 3.43 3.43 3.44
] 90° 90° 90° 90° 90°
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TABLE 4 (For defirition of regions, see Fig. 13)

v=10.0 V=ko0o ¢, o,=165.52° g =169.82° § = 170.70°
Py Pp < P < Py Py, Pp, € P < Py Py
p,= 1.7k | p = 1.9k | p_= 2.7k | p, = 2.6k | p, = 7.12k
9WEl 66 - 1.1 - 1.73 - 1.73 - 1.73
; o/ 0 0 0 0 0

% I/%| C 166 - L.71 - 1.73 - 1.73 - 1.73
=1 B 3,00 3.00 13,00 3.00 3.00
° 75.52° 75.52° 75.52° - 75.52° 75.52°
?) Not Applicablefot Appliceblel 169.61° 169.61° 169.61°
Pa " " 169.61° 169.74° 169.77°
) o, /k n " ot Applicebld ~ 1.7 - 1.75.
.c;a 0,/k n n " .= 0.0L45 - 0.018
g;, T/ : " " - 1.77 - 177
P " n " 2.98 2.97
° " " " 77.34° 77.89°
M| . o.eg - 0,341 - 0.259 - 0.149 - 0.116

/% Mot tpplicabiel - - 1.72 - 1.73 < LTh - 1.75

© I/ " 0.0171 0 - .o.o:ws - 0.18
§> Jy/k " S L7 - 1.73 - 1.77 - 1.77
=1 P ; 3.06 3.00 2.98 2.97
8 w 86.93° 8h.11° 82.29° 81.74°
%3 | 172.38° 172.02° 171.78° 171.71° 171.70°
Py | 172.38° 172.38° 172.36° 172.38° 172.38°

okl _im - 1.91 - 2.17 - 2.60 - 7.15

2 oy/k 0.0455 - 0.157 - 0.425 - 0.856 - 5,37

| §, e 1.6 - 2.26 - 3.05 - 435 - 17.9
=1 B 3.16 3.13 3.11 3:11 3,12

8 90° 90° 90° 50° 90°
T TR ey e e TIRAUBIRL 7 T | e
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TABLE 5 (For definition of regions, see Fig. 13)
V=0.125 V=125 ¢ gp= 126,87° 9 = 148.42°  § = 148.42°
Py P <P, <P Py p; < B, < Py Py
p, = 1.72k | p, 6 =2.09k | p = 2.36k P, = 3.65k P, = 6.1kk
okl 136 - 1.75 - 2.02 - 2.02 - 2.02
< SR 510k - 0,251 - 0.289 - 0.289 - 0.289
% Jl/k - 1.75 - 2.26 - 2.60 - 2.60 - 2.60
=P 3.00 | 3,00 3,00 3.00 3.00
° 36.87° 36.87° 36.87° 36.87° 36.87°
®1 Yot ApplicableMot Applicablel 140.38° 140.38° 140. 38°
P2 " n _ 140.38° 148.32° 148, 42°
o,/k : " Not. Apy .icable] - 2.6L - 5.15
m | 9fk u " " - 0.958 - 3.7
& [ o/ ' " " - bl - 12.08
S " " . 2.72 2.99
° , " " n 58,19° 58, 42°
M - 1z - 1.23 - 1.16 - 0.0135 0
9 /% Lot Applicable| - 1.90 - 2.02 - 2,64 - 5.15
o | %% " - 0.102 - 0.289 - 0,958 - 3.b7
g, Jl/k " - 2.é6 | - 2.60 - b b7 - 12.08
“ 18 Z 3.59 3.00 2.72 2.99
¢ " 8l.65° 79.97° 58.64° 58, 42°
®3 | 160.90° 158.62° 156.59° 148.45° 118, 42°
P | 160.90° 160.83° 160.80° 160.85° 160.85°
43 B - 2.09 - 2.36 - 3.65 - 6.1h
A | ofk 0.165 - 0.248 - 0.541 - 1.80 -~ 4,34
~§, Jl/k - 1.75 - 2.83 - 3.65 - T7.51 - 15,1
I 4.85 b, 06 3.85 b1 h.25
o 90° 90° 90° 90° g0°
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TABLE 6 (For definition of regions, see Fig. 13)

V=0.125 V=150 cp ¢P=n&w° ¢S=wMM° ¢ = 154.12°
Pp Pp <D, <P Py, Pp, < P, < Py Py
p,= 1.8k | p_ = 2.0k | p = 2.35k | p_ = 3.26k D, = 5.95k
o /k| _ 1.57 - 1.77 - 2,02 - 2.02 - 2.02
< | %/%| o0 - 0.253 - 0.289 - 0.289 - 0.289
E; Ji/k - 2.02 - 2.28 - 2.60 - 2.60’ - 2.60
“1 e 3.00 3.00 3,00 3,00 3.00
¢ 148.19° 18.19° 48.19° - 48.19° 48.19°
®1 fot ApplicableNot Applicable| 149.05° 149.05° 149.05°
Pa " " 149.05° 153.81° 154,12°
ci/k " " kot Applicableg - 2.46 - 5.14
m | %/k " " " - 0.759 - 3.k
éi Jy/k " " " - 3.92 - 12.01
“ 1 " " " 2.80 2.99
¢ " " " 63.16° 64,12°
L - 1.03 - 0.91h - 0.0559 0
/% Yot Applicable| - 1.91 - 2.02 - 2.6 - 5.14
o | %/k " - 0.113 - 0.289 - 0.759 - 3y
%i __fl/k " - alée . - 2.60 - 3.92 - 12,01
“ 1w " 3.55 3.00 2.80 2.99
S " 86.22° 80.06° 65.08° 64.12°
P35 | 162.85° 161.58° 159.36 155.43° 15%.12°
Py | 162.89° 162.94° 162.89° 162.93° 162,95°
o/k| 1.8 - 2.0k - 2.35 - 3.26 - 5.95
2 op/k 0.0259 - 0.218 - 0.546 S L - 4,16
S1aE o . 2.67 - 3.61 - 6.32 ETRY,
@ g b.12 3.83 3.65 3:80 3.89
6 90° 90° 90° 90° 90°
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TABLE 7 (For definition of regions, see Fiz. 13)
V=0.125 V=2.00 ¢, @p= 150.00° 0 = 160.89° ¢ = 160.89°
Pz iPE<Po<pL Py <P, <Pz Py
p, = 1.9k | p_ = 2.13k P, = 2.2% P, = 2.69 | P, = 5.76k
oW |l Ja1r | - 193 - 2.02 - 2.02 - 2.02
< %\ o.p53 - 0.276 - 0.289 - 0.289 - 0.289
%, Jl/k - 2.28 - 2.48 - 2.60 - 2.60’ - 2.60
=P 3.00 3,00 3.00 3.00 3.00
° 60.00° 60.00° 60.00° 60.00° 60.00°
“1 Mot ApplicablelNot Applicablel 158.16° 158.16° 158.16°
A\ " " 158.16° 159.80° 160.89°
) o, /k " " ot Applicabld - 2.21 - 5.16
@ o, /k " n " ~ 0.499 - 3.4k
: g; Jl/k " " " - 3.13 - 12.06
=1 F " " " 2.89 3,00
¢ " & " 66.59° 70.89°
M| 0.838 - 0.733 - 0.643 - 0.257 0
/% Lot Applicable| - 1.98 - 2.02 -~ 2.21 - 5.16
© o,/k n - 0.22L - 0.289 - 0.499 - 3.k
g% g /k " - 2,48 - 2.60 - 3.18 - 12,06
P " 3.19 3.00 2.89 3.00
8 " 85.47° 81.79° 75.20° 70.8¢°
P3 166.00° 164.73° 163.73° 162.00° 160.8¢°
P | 166.00° 166.02° 166.01° 166.02° 166.04°
S - 2.13 - 2.29 - 2.69 - 5.76
a | %% | . o.115 - 0.348 - 0.507 - 0.502 - 3.99
S/l 8 - 2.9k - 3.b1 - h.60 3.8
Sl 3:55 3.43 3.39 3.k 3.52
8 90° 90° 90° 900 90°
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TABLE & (For definition of regions, see Fig. 13)

V=025 V=k00 ¢, 9= 165.52° ¢ = 170.568°  § = 170.58°
Pg \Pg <P <Py Py, PL <P, < Py Py
p, = 2.00k | p_ =20% | p, = 2.16k p, = 2.30k | p, = 544k
o\/k| 106 - 2.00 - 2.02 - 2.02 - 2,02
< %%\ _ 0.280 - 0.286 - 0.289 - 0.289 - 0.289
g, Jl/k‘ - 2.52 - R.57° - 2,60 - 2.60 - 2.60
i 3.00 3.00 | -3.00 3.00 3.00
0 75.52° 15.52° L 75.52° ¢ 75.52° 75.52°
9 Mot ApplicableNot Applicsble| 169.87° 169.87° 169.87°
P2 g " 169.87° 170.20° 170.58°
) o,/k " " ot Applicebld - 2.09 - 5.16
c: O . " " - 0.36k - 3.2
3| T/x " " m - 2.81 - 12.00
<1 s " " " - 2.97 3.00
¢ " " " 77.92° 80.60°
M| - 0430 « 0,360 - 0.304 - 0.160 0
0, /% Kot Applicable| - 2.0L - 2.02 2,09 - 5.16
o | %fk " - 0.273 - 0.289 - 0.364 - 3.2
g, 5y/x " - 257 - 2.60 - 2.81 - 12.00
&8
" 3.0k 3.00 2,97 3.00
° " 87.55° 85.64° 83.24° 80.60°
P3| 171.96° 171.59° 171.31° 170.96° 170.58°
® | 171.96° 171.96° 171.96° 171.96° 171.96°
o/k | _ .00 - 2.09 - 2.16 - 2.30 - 5.k
o | %/ o.u6 - .34 - 0.411 - 0.555 - 3.70
% L/E1 252 - 2.80 - 3.01 - 3.4k - 12.87
“18 3.12 3.11 3.11 3.11 3.1b
9 90° 90° 90° 90° 90°
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TABLE 9 (For definition of regions, see Fig. 13)
V=025 V=125 ¢, o5=126.87° oo = 152.49° ¢ - 143.40°
Py pp <, <P, P p <P, € Pp Py
p, =2.50k | p =261k | p =2.65k | p,  =3.84k | p, =10.5k
NI - 2.55 - 2.60 - 2.60 - 2.60
{ < /Rl o.810 - 0.850 - 0.86 | - 0.866 - 0.866
ﬁ, Jl/k - 4,05 - 4,25 - 4.33 - 4.33 - 4.33
E “ 18 3.00 3.00 3.00 3.00 3.00
8 36.87° 36.87° 36.87° 36.87° 36.87°
g %) ot ApplicebleNet Applicabld  139.39° 139.39° 139.39°
P2 " " 139.39° 142,51° 143.396°
o, /k " " Not Applicebld - 3.51 - 10.1
m | 9pfE " " " ~ 1.81 - 8.35
8 Jl/k )
g §1 e " " " - 7,08 - 26.8
" " " 2.82 3.00
E 8 " u " 7., 46° 53.1°
ATAL 136 - 1.35 - 1.35 - 0.851 - 0.550
i 9/ Not Appliceble] - 2.57 - 2.60 - 3.51 - 10.1
© 9,/k " - 0.830 - 0.866 - 1.8 - 8.35
i g) J,/k , - 425 - 1,33 - 7.08 - 2.8
1 <178 " 3.07 3,00 2.82 3,00
® " 88.60° 88.11° 77.52° 71.6°
93 160.61° 165.95° 155.8:° 156.12° 154.50°
Py | 160.61° 160.61° 160.59° 160.88° 161.01°
a/kl _a.50 - 2.61 - 2.65 - 3.8 - 10.5
. a | %k o35 - 0.851 - 0.897 - 2.03 - 8.69
- % H/k| 405 - 14.38 ~ 4,50 - 8.07 - 28.1
) “ 1 3.28 3,21 3,19 3.7h k.12
” e 90° 90° 90° 90° 90°
— . -
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TABLE 10 (For definition of regions, see Fig. 13)

V=025 V=150 cp ¢p=138.19" g  =157.3° §= 150.20°
Py Pp < Py <Py Py, PL<P, <Py Py
P, = 2.48k | p = 2.63k | p = 2.69k | p_ = b3k | p, = 11.6k

ql/k - 2.39 - 2,54 - 2,60 - 2.60 - 2,60

‘: ok | . 0.797 - 0.846 - 0.866 - 0.866 - 0,86
ﬁ, Jl/k - 3.98 - k.23 - b3 - 4.33 - 4.33
“ 18 3.00 3.00 3.00 3,00 3.00
° 48,19° 48.19° 48,19° 48.19° 48.19°

91 Not ApplicablelNot Applicable 148.06° 148.06° 148.06°

P2 " " 118.06° 150.13° 150.20°

0)/k " " Not Applicabld - 3.99 - 11.25

- oo/ " n " - 2.27 - 9.53
gb Jl/ X " " " - 8.51 . 30.31
o " " " 2.91 3,00
S " . " 58.51° 60.21°

Ml 13 - 1.09 - 1.07 - 0.523 - 0.k25

%/% hot Applicabld - 2.56 - 2.60 - 3.99 - 11.25

o | 9/k " - 0.820 - 0.866 - 2.27 - 9.53
'g Jl/k " - h.23 - k.33 - 8.51 - 30.31
“ 17 " 3.09 3.00 2.91 3,00
e n 87.61° 86.54° 76.21° 74, 52°
P3| 162.95° 162,14° 161.78° 158.83° 158,43°
Py | 162.95° 162,95° 162.95° 163.09° 163.13°

okl o8 - 2.63 - 2.69 - 4,31 - 11.60

5 °?/ £l - o.05 - 0.861 - 0.925 - 2.50 - 9.78
é Jl/k - 3,98 - 443 - 461 - 9.47 - 30.00
=1 P 3.3k 3.28 3.26 3,66 3.78

® 90° 90° 90° 90° 90°

o ———
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TABLE 11 (For definition of regions, see Fig. 13)

V=025 V=200 ¢, @,=150.00° @ =163.22° ¢« 158,12°
P |Pg <P, <P Py, P, <P, < Py Py
P, ™ 2.52k | p, = 2.61k P, = 2.68k 2" TR S P, = 11.hk

ql/k - 2,46 - 2.54 - 2.60 . 2.60 - 2,60
< | %/%| _o.800 - 0.8l - 0.866 - 0.866 - 0.866
g, Jl/k - k.10 - 4.23 - 4.33 - k.33 - 4.33
“1 8 3.00 3.00 3.00 3.00 3.00
8 60,00° 60.00° 60.00° 60,00° 60.00°
P1 Mot AplicabldNot Applicebld 157.22° 157.22° 157.22°
P2 " " 157.22° 158.11° 158.12°

o,/k " n Not Applicebld - 4.20 - 11.16

g /¥ " " " - 2,17 - 9.3
§ I/ " " " - 9.12 - 30,02
i " . " - 2.9 3.00
¢ " " " 67.146° 68.12°
il . o.85 - 0.811 - 0771 - 0.672 - 0.306

/% bt applicebld - 2.56 - 2,60 - 4,20 - 11.16

© op/k n - 0.818 - 0.866 - 2,47 - 9.43
‘§, J3-'/k " - bh.23 - 4.33 - 9.12 - 30.02
= P " 3.10 3,00 2.96 3.00
° " 88.17° 86, 44° 78.98° 78.32°
P2 1 166,010 165,75° 145,33° 163.7¢° 163.69°
P | 166.21° 166.21° 166.21° 166.26° 166.27°

Wl o 2.61 - 2.68 - bk - 11.38

5 L - 0.84 - 0.923 - 2.63 - 9.60
’a Jl/k - 4,10 - 4.36 - 4,58 - 9.77 - 30,69
§ P 3.22 3.20 3.19 3.40 3. 44

) 90° 90° 90° 90° 90°

.
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TABLE 12 (For definition of regions, see Fig. 13)

V=025 V=k00 oy ¢,=165.52° 9 =17L70° §= 169.26°
Py P € B, <Py, Py, P <P, <Py Pq
p, =258k | p =262k | p =263k | p = 436k | p, = Ll.3Kk
Qkl 2.56 - 2.59 - 2,60 - 2,60 - 2.60
< | %/k| . o.85 20,83 | - 0.866 - 0.866 - 0.866
g, /el ey - 4,31 - 4.33 - h.33 - 1433
%108 3,00 3.00 3.00 2.00 3.00
8 75.52° 75.52° 75.52° 75.52° 75.52°
®). Not ApplicebleNot Applicable] 169.14° 169.14° 169.14°
%2 " " . 169.14° 169.26° 169.26°
0y /k . " hot Applicabld - k29 . | - 1l.22 _
‘:‘ %% " " " - 2,56 - 9.kg
gb 7/ " " " - 9.40 ~ 30.2
P " " " 2.99 3.00
° " " " 79.05° 79.26°
&l - 0431 - 0.388 - 0.371 - 0.337 - 0.147
9 /% ot Appliceblé - 2.59 - 2,60 - 4,29 - 11.22
© op/k n -~ 0.859 - 0.866 - 2.56 - 9.49
% 5 /k " - 4.3 - 4,33 - 9.40 - 30.2.
B " 3,01 3.00 2.99 3.00
: o 88, 49° 87.88° 8l.35° 8k, 14°
¥3 172.27° 172.11° 172.05° 171.78° 171.76°
Py 172.27° 172.27° 172.27° 172.27° 172.27°
cl/k - 2.58 - 2,62 - 2,63 - 4.36 - 11.3
o k| . 0.837 - 0.877 - 0.891 - 2.61 - 9.55
E, nE| b.27 - L.39 - 4,43 - 9.61 - 30.h2
& 18 3.06 3,06 3,06 3.10 3.11
° 90° 90° 90° 90° 90°
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TABLE 13 (For definition of regions, see Fig. 13)

V=0.35 V=125 ¢, @= 126.87° 9g = 157.40° & = 138.27°
g Py Py <Py <Py Py P, <P <P Py
P, = 3.48% P, = b, b3k D, = 6.08k P, = 6.72k P, = 1. bk

i Akl 3 - 3.75 - 3.75 - 3.75 - 3.75
5 < %E| 5o - 2,02 - 2.02 - 2.02 - 2.02
% Jl'/k = 7.79 - 7.79 - 7.79 - 7.79 - 7.79

i “1 8 3,00 3,00 3,00 3.00 3.00
. ® 36.87° 36.87° 36.87° 36.87° 36.87°
1 1| 136.87° 136.87° 136.87° 136.87° 136.87°
I P2 | 136.87° 137.55° 138.10° 138,18° 138.27°
) o)/k Not Applicablel - 4.57 - 6.08 - 6.69 - 11.31
w m | /K " - 2.8k - 1.35 - 4,97 - 9.58
% J:L/k " - 10.23 - 14,76 - 16.61 - 30.48

5 3 " 2.9h 2.93 2.94 2.99
¢ " b2, L4g° Ik, 80° 45.79° 48.09°

M| - 1.8 - 1.18 - 1.22 - 1.18 - 1.08

%) /% Wot Applicablehiot Appljl_._c_ableLNot Applicahld - 6.69 - 11.31

o | %Mk " " - b9y - 9.58

'g 5 /k i i " - 16.61 - 30.48

g P " " " 2.9k 2.99
° " " " 89.01° 86.71°
?3 " “ 161.57° 161.67° 162.05°
Py " " 161..97° 162.00° 162.11°

o /k| .38 - 4,43 - 6.08 - 6,72 « 11.39

A 02/1: - 2.29 - 2.98 - 4.35 - 4.8 - 9.63

g, J:L/k - 7.79 - 10.23 « 1h,76 - 16,68 - 30.71

i B 2.06 2.47 2.93 3.02 3.2h

e 90° 90° 90° 90° 90°
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TABLE 14 (For definition of regions, see Fig. 13)

V=0.35 V=150 o ¢p=138.19° g = 161.32°  § = 146.31°
Py Pp < P, < Py, Py, Zy, TPy < Py Py
D, = 3.6k | p = .7k | p = 5.23k | p, = 6.0%k | B =1l.2k
okl 55 - 3.75 - 3.75 - 3.75 - 3.75
< | %f%| . 2,02 - 2,02 - 2.02 - 2,02 - 2,02
SO - 7.79 - 7.79 - 7.79 - 7.79
SR 3.00 3,00 5,00 3.00 3.00
¢ 48.16° 48.19° 48,19° 48,19° 48.19°
P | 145.69° 145,69° 145.69° 145,69° 145.69°
P2 | 185.69° 146,01° 146.15° 146.25° 146.31°
0,/k Wot Appliceble] - k.51 - 5.23 - 6.06 - 11,16
m | %k " - 2,79 - 3.51 - ho34 - 9.3
% I/ " - 10.08 - 12.23 - 173 2 30.00
218 " 2.97 2.9 2.% 2.99
8 " 50.85° 52.50° 53.98° 56.18°
M| - 1.08 - 1.06 - 1.05 - 0.985 - 0,880
"1/ k Not ApplicableNot ApplicsblelNot Applicable - 5.3% - 11.16
° /% ) i " W - 9.h3
% Iy/% " " i - 14,05 - 30.00
% | B ; ) ;
2.9 2.99
° " v " 88.67° 8.16
:(;’3 " " 164.,33° 163.98° 163.48°
P " " 161,33° 164.33° 164,38°
o/k| . 3.64 - b7 - 5.23 - 6.09 - 11.23
a | %k 2.3 - 2.83 - 3.51 - 4,36 - 9.47
g /e | L 7.9 - 10,08 - 12.23 - 1431 - 30.21
“ 1 2.61 2.75 2.9 3.03 3.21
° 50° 50° 90° 90° 90°
. R S —

— ey PRz PREEDS GRERER semw
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TABLE 15 (For definition of regions, see Fig. 13)

V=0.35 V=2.00 ¢, @p=150.00° g =166.10° § = 155, 42°
Py Pgp < P, < Py, Py, Py, < P, < Py Pg
P, = 3.72k P, = 4, 3kk P, = 4.9k D, - 5.71k P, = 11,8k
Bkl 3as - 3.75 - 3.75 - 3.75 - 3.75
< | %% 0 - 2,02 - 2.02 - 2.02 - 2,02
% Ik} - 7.79 - 779 - 7.79 - 7.79 - 179
& 8 3.00 3.00 3.00 3.00 3.00
8 60° 60° 60° 60° 60°
1 | 155.21° 155.21° 155.21° 155.21° 155.21°
P | 155.21° 155.30° 155.35° 155.39° 155.42°
-9,/% ot Applicebld - 4.36 - L.l - 5.69 - 11.75
m | Ok " - 2.63 - 3.20 - 3.9€ - 10.02
S, Jl/k " - 9.60 - 11.37 - 13.60 - 3L.78
£ 8 " 2.99 2.99 2,98 3.00
o " 61.52° 62.59° 63.58° 65.35°
il - 0.88 - 0.820 - 0.801 - 0.732 - 0.63k
/% Not ApplicablefNot ApplicablelNot Applicabld - 5.69 - 11.75
o | T/k " " " - 3.9 - 10.02
8 | 7. /x
™ 1 " . " - 13.60 - 31.78
1P " u " 2,98 3,00
° " n " 88.63° 86,85°
Py " g 167.56° 167.33° 167.05°
@, n " 167.58° 167.58° 167.59°
a/k| 3.7 - 4.3k - .9l - 5.71 - 11.80
a | %/k| 2.6 - 2.6k - 3.20 - 3.97 - 10,05
3," /el 119 - 9.60 - 11.37 - 13.67 - 31.93
18 2.67 2.95 2.99 3.05 3.1k
G 90° a0° 90° 90° 90°
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TABLE 16 (For definition of regions, see Fig, 13)

V=035 V=koo c, @,=165.52" g =173.10° § = 267.99°
I'g Pp <P, <P Py, PL <P € Py Py
P, = 3.75k | p, =~ h.i5k | B, =5.08k | p =6.82k | p_ = 11,3k
@kl 5 - 3.75 - 3.75 - 3.7 - 3.75
< | %kl o0 - 2.02 - 2.02 - 2.02 - 2.02
% WA - 7.9 - 779 - 779 - 779 - 7.79
“1 3,00 3,00 3.00 3.00 3.00
° | 75.5° 75.52° 75.52° 75.52° 75.52°
1| 167.97° 167.97° 167.97° 167.97° 167.97°
P2 | 167.97° 167.98° 167.98° 167.993° 167.994°
.9/% hot Applicabld - k.15 - 5,08 - 6.81 - 11.25
m | Ok n - 2,42 - 3.35 - 5.08 - 9.51
5, T/ " - 9.00 -11.8 - 16.97 2 30.27
<18 . 3.00 3.00 3.00 2.99
? " 76.03° 76.84° 77.57° 77.96°
8| - 0.3 - 0.418 - 0,394 - 0.332 - 0.310
61/ K Not Appliceblefot ApplicableWot Applicablg - 6.81 - 11.25
o | %/k " " . - 5.08 - 9.5
g, 9y/k " " l - 16.97 - 30.27
“18 " ! ) 3.00 2.99
° " " " 88.64° 88.214°
*3 " " 173.33° 173.25° 173.23°
*y " " 173.33° 173.33° 173.33°
o/kl - 3.75 - b.15 - 5.08 - 6.82 - 11.26
a | 9%/k| -2.03 - 2.k - 3.35 - 5.09 - 9.52
% B/ 7.9 - 9.00 ~11.8 - 17.01 - 30.32
: B 2,98 2.99 3.00 3.03 3.03
e 90° 90° 96° 90° 90°
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